Graphs with every matching contained in a cycle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite graphs with every matching in a cycle

We give sufficient Ore-type conditions for a balanced bipartite graph to contain every matching in a hamiltonian cycle or a cycle not necessarily hamiltonian. Moreover, for the hamiltonian case we prove that the condition is almost best possible. © 2006 Elsevier B.V. All rights reserved.

متن کامل

A degree condition implying that every matching is contained in a hamiltonian cycle

We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We can show that the bound for the degree sum is almost best possible. Résumé Nous obtenons une condition portant sur la somme des degrés de trois sommets indépendants pour que tout couplage d’un graphe soit contenu dans un cycle hamiltonien. Nous prouvons que la born...

متن کامل

Quartic Graphs with Every Edge in a Triangle

We characterise the quartic (i.e. 4-regular) multigraphs with the property that every edge lies in a triangle. The main result is that such graphs are either squares of cycles, line multigraphs of cubic multigraphs, or are obtained from the line multigraphs of cubic multigraphs by a number of simple subgraph-replacement operations. A corollary of this is that a simple quartic graph with every e...

متن کامل

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

Graphs Containing Every 2-Factor

For a graph G, let σ2(G) = min{d(u) + d(v) : uv / ∈ E(G)}. We prove that every n-vertex graph G with σ2(G) ≥ 4n/3−1 contains each 2-regular n-vertex graph. This extends a theorem due to Aigner and Brandt and to Alon and Fisher.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1993

ISSN: 0012-365X

DOI: 10.1016/0012-365x(93)90049-y